
J .  Fluid Mech. (1989), vol. 205, p p .  195-214 

Prin.ted in Great Britain 

195 

Comparison of a pressure-strain rate theory with 
simulations 

By J. WEINSTOCK 
Aeronomy Laboratory, Kational Oceanic and Atmospheric Administration, 

Boulder, CO 80303, USA 

(Received 13 April 1988 and in revised form 19 December 1988) 

A theoretical expression for the slow part (the nonlinear fluctuation part) of the 
pressure-strain rate is compared with simulations of anisotropic homogeneous flows. 
The purpose is to determine the quantitative accuracy of the theory and to test its 
qualitative predictions that the generalized Rotta coefficient, a non-dimensionalized 
ratio of slow term to kinetic energy anisotropy, varies with direction and can be 
negative (this is counter to isotropy return). Comparisons are made between 
theoretical and simclated values of the slow term and of the generalized Rotta 
coefficients. Also compared to simulations is an extension of the theory to account for 
non-stationary turbulence fields. The implication of the comparison for two-point 
closure theories and for Reynolds stress modelling is pointed out. 

1. Background and introduction 
The pressure-strain rate tensor & is a difficult but key term of the Reynolds stress 

equation. For an incompressible flow, this term is usually divided into two parts - 
the so-called slow term (the return to isotropy term) #, and the rapid term 4; (e.g. 
Lumley 1978; Launder, Reece & Rodi 1975; Reynolds 1976). This article concerns 
the slow term. Until fairly recently, the slow term was almost universally modelled 
by the Rotta expression (Rotta 1951) 

& = -Csbii (empirical model), (1) 

bij = (uiuJlq2-&5, 

where E is the dissipation rate of kinetic energy density, bij is the anisotropy of stress, 
8, is the Kronecker delta, ui is the velocity fluctuation along Cartesian direction i, 
q2 = (u i  ui) is twice the kinetic energy density, and C is an empirical dimensionless 
constant - the Rotta constant. However, Lumley (1978) has shown that C is not 
constant. More recently, it was confirmed (Weinstock 1982) that C is not constant, 
and, additionally, differs for different direction components i and j .  Variations with 
ij were found independently by Cambon, Jaendel & Mathieu (1981). These variations 
of C occur because $$ depends on more than one scale of the turbulence and, in 
addition, the scales generally vary with direction. To account for these scales, &was 
derived by a two-point closure theory (Weinstock 1981 ; 1982) -for the case of 
homogeneous, quasi-stationary turbulence. The principal result of this theory is a 
relationship between #f, and an integral over scalar spectra E ( k ) .  The purpose of our 
article is to test the theoretical @j by comparison with numerical simulations. 
Simulations provide a rigorous test of the pressure-strain rate theory, a test which 
cannot, as yet, be provided by laboratory experiment. The simulation flows 
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considered are homogeneous shear and strain, and only the normal (diagonal) 
components Prn (a is not summed on) are investigated here. 

Two curious predictions to be tested are whether C, can be significantly different 
for different directions 01, and whether C, can be negative (implying a tendency away 
from isotropy). Of foremost importance, however, is to investigate the quantitative 
accuracy of the theoretical g5L and C,. 

To some extent, a test of the theoretical q5i5 is also a test of more elaborate, 
complete two-point closures such as the DIA (direct interaction approximation, 
Kraichnan 1959) and the EDQNM (eddy damped-quasi normal, theory, e.g. Orszag 
1970; Cambon et al. 1981) since these closures all have in common a basic neglect of 
two-time fourth-order velocity cumulants. The difference is that the more complete 
closures determine the spectrum E ( k )  whereas the present closure does not - only the 
relationship between g5:, and E(k)  is determined. For application of the theory 
to single-point modelling an appropriate spectrum has previously been given 
(Weinstock 1981, 1982), and, for the sake of completeness, is discussed in $3  of the 
present article . 

2. Theory and simulation 

1981, 1982; Weinstock & Burk 1985) 
The theoretical slow-term relation under consideration is given by (Weinstock 

Here E,(k) is the scalar spectrum of the two-point velocity fluctuation tensor; 
i.e. Ei5(k) is the spherical integral over a k-shell of the velocity spectrum 
(ui(k, t )  u,*(k, t ) )  V-l where ui(k, t )  is the spatial Fourier transform of ui and V is the 
volume. The noteworthy feature of this equation is that it shows that $f, depends on 
E,-iElfij, the anisotropy of the spectrum, rather than on the anisotropy of kinetic 
energy. For application of (2) to Reynolds stress modelling, a simpler form of g5fj was 
derived (Weinstock 1981, 1982 ; Weinstock & Burk 1985) by use of a model spectrum. 

Equation (2) for @, can be put in the familiar Rotta form 

where C, are dimensionless quantities which we refer to as generalized Rotta 
coefiicien ts . 

Our goal is to compare (2) and (4) with numerical simulations of 
p~1(ps(aul/ax5++au5/axi))  = q5:5 for the normal components i = j  = 1, 2 or 3. For this 
comparison, simulation values of spectra are used in (2). What is being tested is 
whether Prn is related to E,(k) in the manner given by (2). Comparisons are made first 
for a homogeneous shear flow, and, afterwards, for a plane strain, axisymmetric 



Comparison of a pressure-strain rate theory with simulations 197 

0.50 

0.25 

I I I I I I 

22 
- - 

m 
I . . I .  

Dimensionless time, Sr 

FIQURE 1 .  &Jc0 versus non-dimensionalized time St for a simulated homogeneous shear flow, 
showing both simulation (curves) and theory (points) : 01 = I ,  2, and 3. S is the mean shear rate 
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contraction and axisymmetric expansion. Incidentally, for such flows, J. P. Bertoglio 
pointed out (private communication, 1987) that, in the original derivation of ( 2 )  
(Weinstock 1981), the gradients of mean velocity V, were not completely accounted 
for in the time dependence of two-time second moments. This has been corrected and 
it is found that ( 2 )  is not changed in form, but that E,(k) varies with time. This time 
variation is determined by the simulation and its influence on @, is accounted for in 
$2.1 and discussed in $3. 

2.1. Comparison for homogeneous shear 
Numerical simulations of homogeneous shear by Rogers, Moin & Reynolds (1986) 
determine the slow pressure-strain rate term components @, = 2pi1(pS aua/axa) in 
a direct fashion. That is, the slow part of the pressure fluctuation, defined by 

( 5 )  
is determined from the simulated u. Also determined by the simulations are the 
spectra E,(k) needed to determine the right-hand side of ( 2 ) .  Hence, simulations 
supply all the quantities needed to test the theory; i.e. to see if 2p;'(pSaua/axa) is 
equal to the right-hand side of ( 2 ) .  Our testing procedure is to calculate the right- 
hand side of ( 2 )  by substituting in the simulation spectra, and then comparing with 
the value of $2 = 2p;'(pSau,/axa) given directly by the simulations. Respective 
values of C,  are obtained by dividing @, with ( - E b , ) .  Such calculations of ( 2 ) ,  or 
(4), were made for simulation run C128U (Rogers et al. 1986), and are displayed in 
figures 1 and 2.  In this run, the turbulence intensities necessarily vary with t ,  the time 
elapsed after simulation start-up, and @, and C, were calculated for each of the 
elapsed time intervals St = 2,4, ..., where S = 28.29 is the mean shear. Figure 1 
contains simulation values of @, versus t together with the theoretical values of @, 
obtained from the right-hand side of ( 2 )  (We note that p s  is denoted by p' and 
(au,/axj++u,/axJ by 2 S ,  in figure 1 . )  Upon comparison, i t  is evident in this figure 

pol VZp" = - v - (u. VU), 
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FIGURE 2. Cae versus t for the simulated homogeneous shear flow of figure 1 ,  showing both 
simulation (A) and theory (0)  values. (a),  ( b ) ,  (c) are for a = 1,2 ,3  respectively. 
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that (2) is close to @, = 2p;1(psau,/~x,) at all times and for all a. Not shown are the 
values of @, for St 2 14 at which time the energy containing scales have grown so 
large that the simulation size and ‘wall effects ’ have become significant. 

Although figure 1 tends to corroborate the theoretical $2, a more illuminating 
comparison is for the generalized Rotta coefficients C, since these have been given 
much attention in turbulence models, and, more importantly they shed some light on 
the behaviour of intercomponent energy transfer. The comparison between simulated 
C, given by 2p;’(pS au,/ax,)/( - eb,), and theoretical C,, given by the right-hand 
side of (4), is made in figures 2(a),  2(b), and 2(c). Noteworthy in these figures are 
three qualitative features. (i) Each C, varies substantially within a single flow as the 
turbulence anisotropy evolves in time (e.g. C,, varies from 0.8 to 2.1 as St increases 
above 4, and C,, varies from zero to 0.4 in this same interval). (ii) C, differs with 
different direction index a, and the difference can be large (e.g. C,, = 0, and 
C,, = 1.5 a t  St = 7). (iii) C,, can be negative (C33 for St between 0 and 6). 

The first of these behaviours, i.e. the variation of C,, with St, conforms with 
previous predictions of Lumley (1978). All three behaviours are predicted by present 
theory. What is unexpected is not the fact that such variations can occur, but, 
rather, that they all occur, and to so large an extent, in a single and relatively simple 
flow configuration. These variations occur in both the theory and simulations. Of 
special note for C,,, the simulation values pass through zero more than once and this 
complicated behaviour is also found in the theoretical values. 

As for a quantitative comparison, figures 2 (a )  and 2 ( b )  show that the theoretical 
C,, and C,, are fairly close to simulated values for almost all points - with the 
differences less than 0.3. The notable exception is the value of C,, a t  St = 2. As for 
C,,, the theoretical values are highly discrepant a t  the points St = 0 and 4, and 6, but 
are accurate a t  the points St = 2 and 8. However, the inaccurate values, and the 
accurate values as well, are mitigated by the fact that we had to divide by practically 
zero in order to obtain C,,; i.e. C,, = -&,/(eb,,) and b,, w 0. Therefore a small 
inaccuracy in b,, will cause a large error C,,, and C,, does not provide a quantitative 
test of the theory. (Incidentally, C,, is not a significant parameter of the flow when 
b,, is near zero since, then, $i3/e is likewise near zero and insensitive to C33. What is 
remarkable about the predicted C,, is that it ‘oscillates’ about zero going from 
negative to positive as does the simulation - a very complex behaviour to predict.) 

From the perspective of closure theory i t  is very desirable to see if the discrepant 
points of C,, and C,, have a simple cause that can be rectified, e.g. violation of a 
simple assumption of theory. An obvious cause is that E,,(k) changes drastically at 
early times, varying from a ‘top hat’  spectrum at St = 0 to a broader and more 
rounded spectrum a t  St = 4 -  as shown in figure 3. Such a rapid variation may 
violate a stationarity condition of the theory. The value of $i3 is particularly 
sensitive to time variations since b,, is a small difference between the two relatively 
large numbers (u’) and &:, 

To investigate the discrepant points, we extend the theory to  time-varying Ei, and 
recalculate C,,. The extended theory is readily derived in Appendix A to give $:j as 
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k 

FIGURE 3. Spectra of the simulated flow in figures 1 and 2: (a) spectra at St = 0;  ( b )  a t  St = 4. 
, E, , (k )  ; ----, E,,(k);  -.-, E,,(k).  -, E ( k ) ;  . . . . .. 

(where the sums on r and a run from 1 to 3) provided that the temporal variations 
are sufficiently slow (a:, < 1).  This equation is the same as (2) except for the time- 
variation factors a,*, and predicts somewhat different values of C,. To calculate these 
corrected C, from (6a) we need aln E,/at, and, since these time derivatives are not 
readily available, we have used the approximation 

alnE, alnR, x- 
at at . (7) 

This approximation is crude but, for use in (6), need only be satisfied near the 
spectral peak of E,  where E ,  is proportional to R,. For cases where near peak 
values of E, are insufficient for use in (6 ) ,  an approximation different from (7) is also 
used - as described in $2.2. This approximation is discussed in Appendix B. The 
corrected values of C, are obtained by substitution of (7)  in (6a) .  These values are 
given in figures 4(a) and 4(b)  for the times St = 2 and 4 (the initial time St = 0 is 
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ignored since the b, and are practically zero and C, is the inaccurate ratio of two 
near-zero numbers). It is seen in figure 4 that the two major discrepancies 
significantly diminish when temporal changes are accounted for. These are CZ2 at 
St = 2 and C,, at St = 4. The error bar in C,, reflects uncertainties of (7) and other 
approximations. The values of the corrected C,, change by less than 10% and are 
ignored. While we emphasize that the improved values of theoretical C,, are only 
approximate owing to use of (7), these changes do show that correction for non- 
stationarity is in the right direction and has the proper magnitude to account for the 
notable discrepancies. The significance of the comparison in figure 4 for closure 
theory and modelling is discussed in $3.2. 

2.2. Comparison for plane strain 
A comparison of theory with plane-strain simulation is shown in figure 5. The 
simulation is identified as run PXA (Lee & Reynolds 1985). Figure 5 ( a )  shows that 
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FIQURE 6. &/e0 versus t for (a) the linear Rotta model and ( b )  simulation and theory. 

theoretical and simulation q5za/eo are quite close to each other, differing by less than 
0.02 for all a and throughout the entire slmulation. 

As found for homogeneous shear flow, it is seen that C, generally varies with 
direction 01 and can be negative. This is shown in figure 5 ( b d ) .  What is most 
remarkable is that the theoretical values of C,, follow the complex behaviour of the 
simulation values, both going from an extremely large positive value to a large- 
magnitude negative value, passing through zero a t  virtually the same point. 
The large magnitudes occur because b,, is very close to zero while q5sl remains 
non-zero. The non-vanishing of q5& at b,, = 0 contradicts the linear Rotta model 
&,(Rotta) = -Cebl1, which, in figure 5(b ) ,  would simply have C,, be a constant of 
roughly 1.5 for all t. The Rotta model is contrasted with the actual q5& in figure 6. 

Quantitatively, the ratio of theoretical to simulated values of C,, and C,, is very 
large - a factor of 3 in some cases. However, the absolute error (difference) is only 
about 0.28 which is small compared with typical values used in models, say 1.5. In 
other words, the relative error is very large but the absolute error is small. We believe 
that the relative error is irrelevant in this particular case since both theory and 
simulation magnitudes are both unusually small. Here, it is the absolute value that 
matters in our opinion. The reader will make his own judgement on this issue. The 
fact that C,, and C,, are less than 0.4 is, in itself, unprecedented and a little striking. 
According to (4), such small values are caused by the low Reynolds number of the 
simulation, i.e. it was previously shown (Weinstock 1982) that the right-hand side of 
(4) gives C, K (1 -@), where R, = q3(22sv)-l is the Reynolds number and Y is 
the molecular viscosity. Therefore, C,, decreases markedly as R, decreases below 
about 20. 

We would like to know if the discrepancy between theory and simulation could be 
explained by temporal changes of kinetic energy as determined by (6). The corrected 
values of C,, and C,, calculated by (6) are shown in figures 7(a)  and 7 ( b ) .  As for 
the case of homogeneous shear, it is seen that the discrepancies significantly 
diminish when temporal changes are accounted for. Error bars a t  the point ts,/qi = 
0.35 reflect the uncertainty in estimated a In E,,/at. This uncertainty, at this 
time point, is because the spectral shapes are changing very rapidly with time 
and approximation (7) is inadequate. The lower extrema points a t  tsO/qi = 0.35 in 
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FIGURE 7.  Corrected C ,  for the plane-strain simulation: 0, corrected theory; 0,  uncorrected 

theory; A, simulation. ( a )  a = 2 ;  ( b )  a = 3. 

figures 7(a )  and 7 ( b )  are for alnE,/at x alnR,/at and the top points are for 
aInE,/at x [E,(k,, t+At)-Em@,, t)]/At where At = 0.35q2/s,, and k, is taken to 
be 9, the value near where the integrand of (6) peaks. Although imprecise, the 
calculated changed in C,, and C,, show that non-stationarity is sufficiently large to 
be a possible cause of the discrepancy between theory and simulation. Our 
reservation about this conclusion is because aE,/at is not known accurately. 

2.3.  Axisymmetric contraction 
Calculations of C, were made for the axisymmetric contraction identified as run 
AXK by Lee & Reynolds (1985). Theory and simulation values are given in figure 8. 
As for the plane-strain case, these C, are all much less than 1.5 because the 
Reynolds number is low. Theory values exceed simulations by about 0.2-a 
comparatively small absolute error (the relative error is large, but of minor 
significance since C, is small, as we argued in $2.2). Unlike the plane-strain case, C,, 
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does not pass through zero and become negative because, for this contraction, b,, is 
never close to zero. 

Whether the discrepancy is explained by non-stationarity can be determined only 
at  the point teo/qi  = 0.62 since only there are the spectra E ,  available to us. At  this 
point, the value of C,  is calculated by (6) and plotted in figure 9. It is seen that the 
discrepancy vanishes for Cll, CZ2, and C,,. We have more confidence in these 
corrected values than for the corrected homogeneous shear values because 
Ell /EZ2 x Rl,/R2z and E,,/E,, x R,,/R,, in most of the spectrum (see figure 5.24 
of Lee & Reynolds 1985) suggesting that our approximation i3 In E,/at = a In R,/& 
is better here. 

2.4. Axisymmetric expansion 
For an axisymmetric expansion, (simulation EXO, Lee & Reynolds 1985) the values 
of C,  are shown in figure 10. Upon comparison, these C, are similar to the 
axisymmetric-contraction case in figure 8 - very small values with a small absolute 
(though large relative) difference between theory and simulation. 

The discrepancy can be readily investigated for the point k,/qi = 0.85 since there 
the required spectra are available to us (figure 5.26 of Lee & Reynolds 1985). The 
corrected C, calculated from (6) is given in figure 11.  As found for the axisymmetric 
contraction, the discrepancy is practically removed when non-stationary is accounted 
for, although there is uncertainty since aE,/at is not known accurately. 

3. Summary and discussion 
3.1. Summary 

(a) Both theory and simulation show that C, vanes substantially with direction and 
can be negative. What was anticipated is the large extent to which C, varies with 
direction. Even larger variations of C, are to be expected when the Reynolds 
number is allowed to increase above simulation values. 

(b )  In every case the theoretical @,/e differed from simulations by less than 0.025. 
For C,, the relative error was large for all the straining flows but the absolute error 

was amost always small - less than 0.3 (aside from the exception cases where b,  was 
extremely small (b ,  < 0.01) and which is discussed separately in item (c)). It was 
argued that the absolute error is more meaningful (than the relative error) since the 
magnitudes of C, are small - much less than unity. 

(c) The large discrepancies in C, found when b, is near zero is explainable by the 
fact that one is dividing by practically zero to obtain C,, i.e. since C,  = -@,/(cb,) 
and b,  x 0, a slight error in b,  will cause a large error in C,. Correspondingly, C ,  
is not a significant quantity when lb,l is that small since, in that case is so close 
to zero that it is insensitive to C,. 

( d )  In every flow point examined but one (CZz at St = 4 for homogeneous shear) 
the discrepancy between theory and simulation of C, was practically eliminated 
when non-stationarity was accounted for. However we emphasize that corrections 
for non-stationarity were calculated with the severe approximation given by (7) and 
should be viewed with caution. One could imagine error bars of 30 % for the corrected 
points shown in figures 4, 7,  9 and 11. 

( e )  The non-stationary corrections are' approximate because they rely on 
a In E,/at x a In R,/at. This approximation is best for the axisymmetric contraction 
point te,,/yt = 0.62 in figure 9 and the axisymmetric expansion point tso/q: = 0.85 in 
figure 11 where the spectra are fairly narrowly peaked with E,, cc R,, near the peak. 
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For these two points the discrepancies are eliminated more completely than a t  any 
other points. 

3.2. Discussion 
3.2.1. Perspective of two-point closure theory 

With an important reservation, the near agreement of prediction with simulation 
when non-stationarity is accounted for would lead us to conclude that two-point 
closures can be accurate for anisotropic flows-even when the anisotropy is very 
large. The reservation is that approximation (7)  was used to estimate aTi in (6) to 
calculate the non-stationary case. This approximation is crude, but may be adequate 
for use in (6) since there it need only be valid near the peak of E,(k). However, the 
uncertainty cannot be removed until simulation values of aE,(k)/at become 
accessible for use in (6). With this reservation in mind, the comparisons for the non- 
stationary correction tend to confirm discard of two-time forth-order cumulants for 
large as well as weak anisotropy - in so far as the pressure-strain rate is concerned. 

3.2.2. Perspective of single-point modelling 
The comparisons do not provide a complete test of the theory for its application 

to single-point modelling because the spectra E ,  were provided by the simulations. 
What remains, for practical applications, is to substitute an appropriate model spec- 
trum in (2) or (4). For the sake of completeness, we note that this substitution was 
previously made for the following (model) spectrum : E L  = /kaa k-e when k,  Q k < k,  
and Eia = /?em k;"f k" when k < k,, where m is a dimensionless parameter 
characterizing the production regions and k, is an integral scale of the spectrum. 
(This spectrum reduces (2) to  a function of <ut )  and so makes the theory applicable 
to single-point models. Of particular advantage for such models, we recall, was that 
p, was found to be insensitive to  m - a kind of 'universal ' behaviour suggesting that 
$2 is independent of the production mechanism of the turbulence.) The accuracy of 
using this spectral model is not directly tested in $2. Nevertheless, one could infer 
confirmation when the Reynolds number is very large since then the model spectrum 
is justifiable on theoretical grounds - particularly in the inertial subrange where 
most of the energy is - and (6) was found to  be accurate when the correct spectrum 
is used. Usage of the model E, a t  small Reynolds number has yet to be tested. 

One last matter we mention concerns the non-stationarity correction in expression 
(6). Although the correction removed much of the discrepancy found between 
simulations and the simpler expression (2), with the reservation of (7) in mind, 
expression (2) may be preferred over (6) for practical usage (because i t  is simpler) - 
provided the errors in predicted T,/e are small. These errors are shown in figures 1 ,  
5 , 8  and 10 where the discrepancy with simulational @L/e is seen to be less than about 
0.025 in every case. In  other words, the error in the uncorrected theory is less than 
2.5% of the dissipation. The question is whether this accuracy is acceptable for 
single-point modelling. If so, (2) without a non-stationary correction is sufficient for 
the flows considered here. 

The author is indebted to K. Shariff for making the calculations reported here and 
for discussions of the pressure-strain rate, and to M. J. Lee and R. S. Rogallo for 
invaluable assistance in the calculations. The author is also grateful for the 
hospitality shown him a t  the CTR (Center for Turbulence Research) of Stanford 
University and NASA, where most of the calculations were made. 
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Appendix A 
To derive the correction given by (6) for a non-stationary velocity spectrum 

S,(k;t,t,) we note that this spectrum enters $7j in bispectral forms typical of 
cumulant neglect theories (see Appendix A of Weinstock 1981) as 

dt, S,,(k,; t ,  tl) Sij(kb; t ,  tl), k, k -  k,, (A 1) 

S,j(k,; t ,  t l )  v-'(u?(ka, t )  Uj(katl), 

where ui(k, 1)  is the Fourier transform of fluctuation velocity u&, t )  along direction 
i, the asterisk denotes the complex conjugate, and V is the volume of the system. We 
note that S , ( k ;  t ,  t l )  is a two-time spectrum, and, for our non-stationary case, this 
spectrum is not necessarily symmetric in directional components ij since (u:( t ) )  
may vary differently with t than does (u i ( t l ) ) .  More specifically, $ij depends on two- 
time spectra in the form J ,  = Jrr,i-~Jrrpp8i, (Weinstock 1981, 1982), i.e. $:, is 
proportional to 

where the indices r and p are summed on, and M is a well-defined function of k, and 
k, whose details are not needed for present purposes. This form is implicit in (2). The 
time integral in (A 2) was evaluated straightforwardly for the case of a stationary 
spectrum, i.e. for the case a(u:(k, t )  uj(k, t ) ) /a t  = 0. 

Our goal is to determine the time integral in (A2)  when the spectrum is non- 
stationary, varying with t as 

<u,*(k, t )  Uj(k, t ) )  = (01 * ( k,t)v,(k,t))exp ( w 4 t + w j t )  (A 3) 

where 

and wi 3 q ( k ,  t )  may vary with k and t. Hence, growth of (u: u;) is accounted for 
by wi and w!. To formulate an approximate two-time spectrum for use in (A 2),  we 
need a model velocity field which satisfies (A 3) and (A 4). Such a field is given by 

ui(k, t )  = v,(k, t )  exp (wit) (model u,(k)). (A 5 )  

where vi is a stationary field. This model can be justified when wi is non-fluctuating 
and constant in time or when the time variations are sufficiently slow that lwil 4 kq. 
We consider the latter case. Substituting (A 5) in (A 2) we have 

Xi,(k;t, t l )  = V-l(w~(k,t)wj(k,tl))exp(~,t+~it,). (A 6) 

Now, since vUa(k, t) is, by definition, a stationary field, in the sense that its magnitude 
is unvarying, we can use previous expressions for its self-correlation e.g. Kraichnan 
1959 ; Weinstock 1976). In particular, at  small It - tll ,  wherein is the main contribution 
to (A 2),  this correlation is 

(vf(k, t )  vj(k, ti))  x (v:(k, t )  vj(k, t ) )  exp [-$ke"qz(~-t1)21, (A 7) 
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where the inequality Iw( 4 kq was employed in order to  derive the simple exponent 
shown in (A 7) from the more accurate, but complicated, exponent 

- ? k f  dt, 1, dt3(W2) W 3 ) )  ; 

i.e. the more accurate exponent was approximated by 

$k2( t - t , )2  (u ( t ) *u ( t ) )  - ik2q2( t - t l )2 ,  

valid when IwI is small. Substitution of (A 7)  in (A 6), followed by use of (A 5 )  for v1 
and vj, gives 

where S,,(k) E S,(k; t ,  t )  (single-time spectrum). 

Equation (A 8) is the same as the stationary case except for the growth (or decay) 
term w, ( t - t l ) .  

To determine the change in &,, caused by this growth term, (A 8) is substituted in 
(A 1)  to obtain 

(A 8) S,(k ; t ,  tl) = v-lS,(k) exp [ - y  1k2 q 2 ( t  - t$ - w,(t - t l ) ] ,  

(A 9) 
l dk, dk 

JrsU = [-@$Sr8(ka)Sij(kb) dtlexp [ - i ( k ~ + k ~ ) q 2 ( t - t 1 ) * - ( w ~ + w s )  (t1-t)1* 

An adequate approximation for the t ,  integral when t is larger than 
given by 

+ k;) q2]-a is 

Substituting (A 10) in (A 2) we have 

Equation (A 11) reduces to the stationary case when ar, = arrr = 0. As this expression 
implies, the non-stationary case is obtained from the stationary case by inserting the 
factors (1 +a,) as shown. 

The last step in the derivation of &, (e.g. Weinstock 1981) is to integrate (A 12) 
over spherical angles 9, and SZ, of radii k, and k,, respectively. This integration was 
previously performed for arj = 0 (e.g. Weinstock 1981), and the same result is 
obtained for (A 12) except th?t the factors 1 + a ,  appear -provided that arj is 
independent of the directions of k,  and k, or that larj[ 4 1 .  We thus have for (A 12) 

where d,, is a quantity that also appears in the stationary case. Again, it is seen 
that stationary case is converted to the non-stationary case by inserting 1 + ad and 
1 +a,. Correspondingly, ( 2 )  is converted to the non-stationary case by replacing 
E(kb) [Eij(ka) - i E ( k a )  with 
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ion at tco/pt = 0.62; (b) spectra of plane strain 
at tc,,/qt = 0.85. 

Making this replacement in (2) yields (6), as we sought to prove. The ar3 in ( 6 b )  are 
defined a little differently than in (A l l ) ,  but can be seen to be the same by taking 
into account that  q in (A 3) satisfies w, = $a1nE,,(ka)/i3t, wherej is not summed on. 

Appendix B 
To evaluate the right-hand side of (6) we resort to the approximation 

a In E,(ka) a In R, 
%- 

at at * 

This approximation is justified if the E,(ka) are all proportional to each other a t  all 
k,, i.e. 

(B 2) 

or, a t  least, if the main contribution to the integrations in (6) come from a narrow 
region of k, in which E,(k,) are proportional to R,. Where these conditions are not 
satisfied, corrections are made to  (B 1). Study of the spectra for these simulations 
shows that approximation (B 2 )  is only fair for the homogeneous-shear and plane- 
strain simulations, but is very good for the axisymmetric contraction. For example, 
figure 12 (a) shows that (B 2) is exceedingly well satisfied for an axisymmetric 
contraction a t  the time te,/qi = 0.62, whereas figure 12 (b )  shows that (B 2 )  is not as 
well satisfied for a plane strain. 

Similarly, the homogeneous-shear spectra in figure 3 do not satisfy (B 2) for all k,. 
Deviations from (B 1) are estimated by comparison with 

En(ka) a E22(ka) a E33(ka), 

alnE,(ka,t) E,(ka,t+At)-E,(ka,t) 
At 

N 

at 
, 

where At is the time interval between successive printouts of E,. The value of At is 
O.35qi/e0 for plane strain, which is too course for other than an estimate. 
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Two other approximations were also used to calculate (6). The first was to replace 

r a 1 x E r r  [ (1  + arj)- l  ~ d j  - c i(1+ U J ~  ~ a a  8, 

by E[(1  +uqj)- lEi j - i ( l  +uqa)-*Em8ij], 

where aqj = (3n/8)+(k:+ k~)-tq-l[a1nE/at+alnEj,/at], 

which replacement is justified when Ju,,~ < 1. The other approximation was to take 
advantage of the fact that  the main contribution to the integrations in (6) and (2) is 
from k, x k,, so that  the ratios of these two equations is, with (4), 

c, , IOm dka k, '('a) [(I + agj)-1 ~ t j ( k , )  - c i(1 +a,,)-' ~ a a ( k , )  8ij1 
, ( B 3 )  2- 

dka k,E(ka) [E,(',) - c %&a) 4,l c:, - 
a 

where denotes the uncorrected stationary value given by (4) and Cij denotes the 
value corrected for non-stationarity obtained from (6). If the error made in replacing 
k, by k, in (2) and (6) is small, then i t  is even smaller in the ratio (B 3) since a first- 
order error in (2) and (6) is second order in their ratio, e.g. a 30% error in (2) and 
(6) is only a 10% error in (B 3). I n  view of the uncertainty in ugj to begin with, 
approximation (B 3) seems justifiable. We do not expect the overall accuracy of the 
ratio Cfj/C;, to exceed 70 or 80%. 
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